

The Post Fukushima Era: Is Nuclear Power a Safe, Green Power Source?

Ken Nash Chemistry Department Washington State University Pullman, WA 99163

Growing Cleantech Businesses Bellvue, WA

June 17, 2011

Reactors at Fukushima Daiichi

- Reactors performed as designed
- Automatically shut down at onset of 9.0 earthquake
- Withstood the tremendous force of the Tsunami
- Total loss of electrical power to the plant affected cooling systems of reactors and fuel storage pools
- Cold Shutdown will require another 3-6 months of rebuilding infrastructure

Dose Rates in Prefectures Near Fukushima plant as of 17 March at 18:00

Regions and Prefectures of Japan

1. Hokkaidó Téheku 2. Armori 3. hvats 4. Mýragi 5. Akite 6. Yarnagata 7. Fukushima Kantö	24. Mie 25. Shiga 26. Kyoto 27. Osaka 29. Hyogo 20. Nara 30. Wakayama Chugaku 31. Tottori 32. Shimane 23. Okayama		Prefecture	Dose Rate 17 March At 18:00 (µSv/h)	Normal Natural Radiation Dose Rate (µSv/h)	Map Reference
8. Ibareki 9. Tachigi	34. Hiroshima 35. Yamaguchi	\sim	Ibaraki	0.244	0.036 - 0.056	8
10. Gunma 11. Saitama 12. Chiba	shikoku 🔀	,	Tochigi	0.113	0.030 - 0.067	9
13. Tokyo 14. Kanagawa	26. Tokushima 37. Kagawa 38. Ehime	ই বি	Gunma	0.109	0.017 - 0.045	10
Chūbu 15. Bijgata	29. Kachi	γ	Saitama	0.068	0.031 - 0.060	11
16. Toyama 17. Ishikawa	40. Fukuoka	(3)	Chiba	0.(41	0.022 - 0.044	12
19. Yamanashi 20. Kagano	42. Nagasaki 43. Kumamete	4	Tokyo	0.(53	0.028 - 0.079	13
21. Gifu 22. Shizuoka 23. Aichi	45. Miyazaki 46. Kagozhima	- Fulwahima	Kanagawa	0.056	0.035 - 0.069	14
	47. Okinawa		Niigata	0. 48	0.031 - 0.153	15
3	$\begin{array}{c} 1 \\ 26 \\ 20 \\ 11 \\ 31 \\ 25 \\ 23 \\ 25 \\ 23 \\ 25 \\ 23 \\ 24 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	³ 12 13 Tokyo	24 h/d x 365 U.S. back	d/y = 2,137 g <mark>round a</mark> y	.4 µSv = 2 [.] verage 36	13 mrem/y 60 mrem/y
41 43 43 44 42 45 42 46	36 29 27 39 30 38	478				

Fundamental Relationships from Physical Science Needed for Energy Discussions

- Second law of thermodynamics:
 - $\Delta G = \Delta H T \Delta S$

 total available energy = heat content minus that lost to increasing disorder (in a spontaneous process entropy (S) always increases)

Mass/Energy Equivalence (A. Einstein)
 E = mc²

Outline

- The Industrial Revolution/Fuel Energy -Power Density
- Fossil Fuels/Population/Global Climate
- U.S. Power Consumption
- Options for Power Generation and Distribution
- Potential Impact of Nuclear Power (Promise and Challenges)
- Energy as a National Priority Where do We Go from Here?

Figure 1.1 Various forms of energy consumed in the United States since 1850. This type of graph is called a semilogarithmic plot, and an explanation of the scales is given in the Appendix. *Sources: Historical Statistics of the United States, Colonial Times to 1970.* U.S.

|--|

U.S. Total Energy Supply and Pattern of Use, 2003

Energy flow from source to use 2003 in units of QBtu (source, USDOE Energy Information Institute, Annual Energy Review 2003)

We have 6.9 billion neighbors in 2011

Currently, 2 billion people have no access to electricity

http://antwrp.gsfc.nasa.gov/apod/ap001127.html

*Current global power consumption: 12 TW (1012), 85% fossil fueled Atmospheric CO*₂: 1900 - 270 ppm, 2000 - 377 ppm, 2100 - 550 ppm *To stabilize at 550 ppm, 15 TW of emission free power needed by 2050*

"Advance Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet" M. J. Hoffert et al. Science 298, 981 (2002)

By 2050 we may have 9 billion neighbors

http://antwrp.gsfc.nasa.gov/apod/ap001127.html

- Electricity promotes prosperity
- Prosperity lowers birthrates
- With increased availability of primary power, global population could stabilize after 2050

"Advance Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet" M. J. Hoffert et al. Science 298, 981 (2002)

Global CO₂ Emissions

- Atmospheric CO₂ has increased 31% since 1750 to a higher level than any time in the last 420,000 years, and probably 20 million years.
- It contributes 60% of the warming effect.
- About three quarters of the human-induced CO₂ emission is due to fossil fuel combustion.
- Worldwide emissions of CO₂ from burning fossil fuels total 25 billion tonnes per year 2002, 29 in 2006.
- About 38% of this is from coal and about 43% from oil.
- Polar ice is melting.
- Every 1000 MWe power station running on black coal means CO₂ emissions of about 7 million tonnes per year. If brown coal is used, the amount is much greater (but coal is far and away the least expensive fuel for electricity production)

Country	Per Capital Emis (tons/year)	sions Share of	Share of World Total Emissions (%)		
United States	19.66	5.9 x 10 ⁹ total (2006)	23.5	19.9	
Canada	16.93		2.2		
Russia	10.43		6.2		
Germany	10.15		3.5		
South Korea	9.48	r.	1.9		
Japan	9.47		5.0		
United Kingdom	8.94		2.2		
Italy	7.47		1.8		
China	2.55	6.0 x 10 ⁹ total (2006)	13.6	20.6	
India	0.97		4.2		

Table 10.4	Ten Large Per	Capita Emitters	of CO ₂ from J	Fuel Combustion	in 2002 ^a
-------------------	---------------	-----------------	---------------------------	-----------------	----------------------

^aSeveral less populous countries have higher per capita emissions of CO₂. For example, Qatar is reported to have emitted 59 tons per capita in 2002 (United Nations, 2005). Source: CO₂ Emissions from Fuel Combustion, 1971–2002, International Energy Agency, 2004.

Sources of U.S. Electricity

D. Talbot, Lifeline for Renewable Power, Technology Review, MIT, Jan/Feb 2009

 Nuclear: Expensive to High build cost because of build, cheap to operate. needed safety systems and antinuclear litigation Capital cost* \$2,475 90% capacity factor Cost to generate electricity 3.3¢ (per kilowatt-hour) No greenhouse gas emissions Domestic fuel supply Radioactive waste Uranium mining and transport Stable Costs **Coal:** Least expensive power, most polluting. > Capital cost* \$1,534 Cost to generate electricity 70% capacity factor (per kilowatt-hour) Domestic supply Highest greenhouse gas emissions T. M. (0. 10) Coal mining 8 개 바 와 장 뒤 개인의 관련을 * In 2006 dollars; not including loan interest

Scientific American Earth 3.0 (2009)

✓ Natural gas: Cheap to build, expensive to run.

Capital cost* (per kilowatt)

Cost to generate electricity 4 (per kilowatt-hour)

Greenhouse gas emissions Drilling

SOURCES FOR ALL DATA DISPLAYS: Energy Information Administration, Federal Energy Regulatory Commission, International Energy Agency

Wind: Cleanest to operate, least dependable. ►

Capital cost* \$1,434 (per kilowatt)

Cost to generate electricity 3.49 (per kilowatt-hour)

Intermittent supply Can be far from customers

Scientific American Earth 3.0 (2009)

Power Production and Population in the U.S.

Power Production and Population in the U.S.

Renewable Component

Energy Source	QBtu	Percent ^b
Conventional hydroelectric power	2.779	2.83
Geothermal energy	0.314	0.32
Biomass	2.884	2.94
Solar energy	0.063	0.06
Wind	0.108	0.11
Total	6.15	6.3

Table 4.1 U.S. Renewable Energy Consumption in 2003 in QBtu^a

^aHydroelectricity generated by pumped storage is not included in renewable energy. ^bBased on total energy consumption of 98.156 QBtu in 2003. (Source: U.S. Energy Information Administration, Annual Energy Review, 2003.)

Project	River	First Year of Operation	Rated Capacity in 1991 (MW)	Rated Capacity Planned (MW)		
Grand Coulee Columbia 1942 6,480 10,23						
John Day	Columbia	1969	2,160	2,700		
Bath County, VA	Buck Creek	1985	2,100	2,100		
Chief Joseph	Columbia	1955	2,069	2,069		
Ludington	Lake Michigan	1973	1,979	1,979		
Saunders/Moses —Niagara	St. Lawrence	1961	1,950	—		
The Dalles Columbia 1957 1,807 —						
Raccoon Mtn.	Tennessee (Lake Nickajack)	1979	1,530	1,530		
Hoover Colorado 1936 1,345 2,45		2,451				
Northfield, MA Briggs 1972 1,000 1,000		1,000				
McNary, OR Columbia		1954	980	2,030		
Glen Canyon	nyon Colorado 1964 950 —					
Source: U source: U source: U source: U	 Estimated additional potential for hydroelectric is about 2X this total, but there is opposition 200 dams have been dismantled in the US last 10 years 					

Table 5.1 Some Large Hydroelectric Projects in the United States

- Wholesale replacement of fossil by solar may be limited by materials availability (e.g., Ga, As, Te)
- Significant potential but a lot of research needed
- Intermittent supply requires backup power source

Wind Energy Potential

Geothermal Energy Potential

Hydrothermal systems Hot dry rock (igneous systems) Normal geothermal heat (200 °C at 10 km depth)

Figure 5.8 An OTEC heat engine using ammonia as a working fluid. The turbine is driven by the ammonia vapor and is connected to a generator to produce electricity. The warm water is drawn from the ocean surface; the cold water from a depth of 1000 meters. (Figure supplied by the National Renewable Energy Laboratory.)

Biomass Energy Potential

Global: Top Down

- Requires large land areas because of low efficiency (0.3%)
- 3 TW requires ≈ 600 million hectares = 6x10¹² m²
- 20 TW requires \approx 4x10¹³ m²
- Total land area of earth: 1.3x10¹⁴ m²
- Hence requires 4/13 = 31% of total land area

 Unfortunately, the existing electrical grid does not adequately connect solar/wind fertile areas to existing the population centers (except in the Southwest).

 Major upgrades to the transmission grid would be needed, but

Transmission losses are inevitable

World-Wide Use of Nuclear Energy 15 % of Total Electricity Production

COUNTRY		REACTORS	% TOTAL ENERGY	
USA	(open)	104	20	
France	(closed)	59	75	
Japan	(closed)	54	29	
Great Britain	(closed)	31	18	
Russia	(closed)	31	18	
Germany	(open)	17	23	
South Korea	(open)	20	35	
India	(open)	18	2	
Canada	(open)	18	15	
Ukraine	(open)	15	49	
Sweden	(open)	10	37	
Finland	(open)	4	33	
Switzerland	(open)	5	39	
World		437	15	

Deutsches Atomforum e.V., Kernenergie –Aktuell 2010; data until Dec. 31, 2009

A Closed Nuclear Fuel Cycle

Source: International Atomic Energy Agency, U.S. is from Energy Information Administration

Updated: 5/08

Top 10 Nuclear Generating Countries 2008, Billion kWh

	USA	France	Germany	Japan
# LWR reactors	104	59	19	54
10 ⁹ kWh nuclear	809.0	418.3	140.9	240.5
10 ⁹ kWh/reactor	7.8	7.1	7.0	4.9
% Nuclear elec.	20	76	28	25
10 ⁹ kWh total	4,107	550	498	966
Est. population	308M	65M	82M	127M
10 ⁹ kWh /10 ⁶ pop.	13.3	8.5	6.1	7.6
CO ₂ emissions (ton/person)	19.0	6.2	10.4	9.8

Nuclear Power

Fission involves the direct conversion of mass to energy - ²³⁵U and ²³⁹Pu

Fission releases ~200 MeV/fission event or 8.1x10⁷ kJ/g (uranium)

Fossil fuels involves breaking chemical bonds ~4 eV or 33 kJ/g (carbon)

- Enormous amount of energy from a small volume of fuel
- Fuel has limited use to mankind other than for the production of electricity. In contrast, fossil fuels have a wide variety of applications from pharmaceuticals through transportation
- One ton of natural uranium produces electrical power equivalent to 20,000 tons of black coal or 30 x 10⁶ cubic meters of natural gas
- Nuclear power is the only energy industry that takes full responsibility for all of its wastes, and costs this into the product

D. Beller and R. Rhodes, "The Need for Nuclear Power" Foreign Affairs v79

Nuclear Power

Fission involves the direct conversion of mass to energy - ²³⁵U and ²³⁹Pu

- 22 tons of uranium saves 10⁶ tons of CO₂ as compared with coal
- 50 year supply of U at current use rate in ready supply

250 years considering all known resources

- Breeding and burning Pu and operating fast spectrum reactors extends the supply by a factor of up to 100
- Keeping Pu in the fuel cycle reduces nuclear weapons proliferation concerns
- Thorium-uranium breeder cycles broaden the possibilities by many orders of magnitude

D. Beller and R. Rhodes, "The Need for Nuclear Power" Foreign Affairs v79

Background Energy Sources for U.S. Electricity and Spent Fuel Statistics

Nuclear power plants are producing about 20% of the electricity in the U.S.

- 104 operating reactors
- 14 decommissioned reactors
- 72 plant sites with spent fuel
- · 5 DOE sites with spent fuel
- · 36 states with spent fuel
- · 40,000 metric tons of spent fuel exist in 2000
- 105,000 metric tons of high-level radioactive waste projected by 2035

Radiotoxicity as Ingestion Hazard

Radiotoxicity as Ingestion Hazard

whe

U.S. R&D SPENDING

Historically, energy R&D has been but a sliver of overall federal R&D investment

Conclusion:

As the end of the age of fossil fuels approaches.....

- Energy demand will grow faster than overall population
- More of the developing world will industrialize
- Global Climate will continue to be a matter of concern
- Pressure will increase for more efficient energy use
- Big breakthroughs in advanced energy technologies (fusion, solar, geothermal) may remain elusive
- Waste management, recycling and efficient use of energy and resources will be critical
- All forms of energy production have a role to play
- A well educated technological and scientific workforce will be needed and a better informed general population (including political leadership) will be desirable