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UniEnergy Technologies, LLC

UET is a Washington-based clean

energy company scaling up to be

a leading developer and provider

of energy storage solutions.

d  Founded by leading scientists in
redox flow batteries, motivated to

commercialize advanced
technologies developed at labs

d  Scaling up new generation V redox
flow batteries in engineering,
operations, and marketing

d Located in Mukilteo, nearby to
Seattle and Bellevue




Electrical energy storage (EES)-
A key campanenf of the future grid —
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EES Applications - Time Scales
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Performance and economic requirements

3 Energy/power, or
discharge duration:
seconds ~ hours,
depending on
applications;

J  Quick response seconds
or sub-seconds

1 Efficiency: High,
preferable;

Life: >10yrs, >4,000 deep
cycles, higher for shallow

oo
- - 2 2 - cycles, depending on
Storage Power Requirements for Electric Power Utility Apphic ations applications;
http://electricitystorage.org/ 0 Safety

J Costs: low capital cost, levelized cost over
life, social cost (considering carbon Effects) =T Lnicneray
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[ EES feChnOIOQY op"‘ions] Yang, et al, Chemical Reviews, 111, 3577, 2011

Direct storage Indirect storage (via energy conversion)

Electrical charges:|(Potential energy: | Kinetic energy:| Chemical energy:

Capacitors pump hydro, flywheels batteries
compress air
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Redox flow battery (RFB)
- regenerative fuel cell

+ - ] Separate design of
- energy (KWh) — electrolytes

- power (KW) — cell stack

Catholyte Anolyte

J “Inert” electrodes — no structural
changes and stress buildup in
KWh electrodes

- potential long cycle life
- cycle life independent of SOC/DOD
- High fuel utilization

KWh

) Active heat management — flowing electrolytes carry away heat generated from
ohmic heating and redox reactions-super safe

) Capable of storing a large energy/power (MWs/MWs) in a simple design, for
durations up to 12 hours

J Challenges to be discussed

U:T UniEnergy
Wang, Li, Yang, Adv. Functional Mater., in press, 2012. ) Technologies




Existing RFB chemistries

] Varied redox couples studied
1 Dominated by aqueous supporting electrolytes, SO,%, CI, Br, ...

] A few non-aqueous electrochemistries explored
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Standard potential (V) of redox couples U:T UniEnergy
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Electrolyte

All vanadium (V) RFBs

lon-
selective
Membrane

Electrode

Electrolyte

Source:lload

' + 4 _ Diecharge .
Cathode: VO; +2H™ +e” ——— V0*" + H,0

_ Diecharge

Anode: V& —em —— V3t

Dizcharge
Cell: VOF + V2* 4 2H* — 5 v0* + V¥ + H,0 E,=1.26V

Wang, Li, Yang, Adv. Functional Mater., in press.

Same active element (V) at
both negative and positive
sides, mitigating cross-
transport

Trace back to efforts by Dr.

Larry Thaller at NASA in
1970s

First demonstrated by Prof.
Maria Skyllas-Kazacos in
1980s

Up to multi-MWs
demonstrated

Unlimited cycle life, 270,000
cycles demonstrated
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Challenges of V RFBs

Performance:

-Low energy density 20~33 Wh/liter; specific energy 15~25 Wh/kg

-Heat management, frequent balancing,

-Long term durability/reliability
-System energy efficiency <60%

Economics:

- Capital cost >$3,000/KW or >$600/kWh for a six hr system

- >20¢/kWh (levelized over life time)

Energy + Power 1MW 6MWH
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Fundamental issue: limited chemical stability

¥ £ 3
) Issue of stability: >40°C, V>* i I i
precipitates out; other V™ out at l
RM or low temperatures W i !
. . AN Nl
) Limited energy capacity <1.75 M in ’
e N o Y e

the sulfate systems

] Operation temperature
window, 10~40°C, requiring
active heat management

J Frequent balancing due to the
reaction mechanisms




New generation vanadium RFB

lon-
selective
Membrane

V™ concentration >2.5M,
80% increase in energy
capacity

Electrode

Electrolyte Electrolyte

1 Stability window extended
to -5~60°C, easing or
potentially eliminating heat
management

] Stable operation without
frequent balancing

J 2~3 times of reduction in

Discharging,. capital and levelized cost

Catholyte: VO*+Cl+H,0-e charge . VO,Cl + 2H*

"~ Discharge

Charge

AnOIYte: V3++e "~ Discharge = V2+

Charge

Overall: VO +Cl +H,0+V3* ~ oischarge  VO,Cl + 2H* + V2
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UET Missions

Demonstrate and commercialize new generation RFBs

Develop and produce a series of RFB systems built from 25 kW
modules scaling up to mult-MWs in 2 years, through innovation and
strategic partnerships with BIC and its affiliates

Together build a world-leading EES product development company and
manufacturing chain

Become a major provider in the EES markets in the US, Europe, South
Asia, and China

Leverage technology
leadership of strategic
partners to establish an
US industry in RFBs and
enhance its
competitiveness in EES
and clean energy

200kW unit/sub-system
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UET partnerships

Proudly Operated
by Battelle Since 1965

Tech transfer
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Establish a renewable & grid integration center

d

d

15

Build a generation and storage station to simulate integration of wind or
solar power

— "

Establish market needs
and economic indicators

Evaluate UET modules
and products

Collaborate with US
utilities, national labs
and/or universities

Look for collaborations
with utility and
renewable industries

THANK YOU ET ey
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