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Emerging Contaminants?

08 September 2020 4

• Impacts to drinking water supplies are driving public awareness

• Poly and perfluoroalkyl substances (PFAS)

• 1,4-dioxane

• Changing regulatory standards or debate on toxicity

• Hexavalent chromium

• Perchlorate

• TCE in vapor intrusion

• Evolving understanding of impacts and usage

• Nanoparticles, pharmaceuticals, pesticides, trichloropropane, flame 
retardants



PFAS: Poly and Perfluoroalkyl 
Substances 
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PFAS occur in consumer, 
industrial, and technical products

Potential drinking water impacts 
drive most investigation and 
treatment efforts

Some PFAS are bioaccumulative
and potentially toxic; data for most 
are unavailable

Analytical methods for PFAS are 
widely available but not always 
standardized

All PFAS are environmentally 
stable or form stable end products

PFAS regulatory targets are 
becoming more widespread and 
are on a downward trajectory

Property of Arcadis, all rights reserved 

PFAS Introduction
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PFAS Uses

Where We Find Them and How They’ve Evolved

Firefighting 
Foams

Metal 
Plating

Textiles Electronics Photography Paper Coatings Paints Hydraulic Fluids

© Arcadis 2018
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Specific Characteristics of PFAS

• Mobility
High aqueous solubility, moderate sorption 

• Extreme Persistence
Perfluoroalkyl compounds don’t naturally degrade; polyfluorinated 
compounds form perfluoroalkyl compounds

• Surfactant Nature
Assemble at surfaces, especially air water interfaces

• Bioaccumulation
Long chain PFAS bioaccumulate in humans (protein rich compartments)

• Toxicity
Coupled with bioaccumulation, contributes to low regulations for some 
PFAS
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Poly- and Perfluoroalkyl Substances (PFAS)
4,730 known compounds

Perfluorinated Compounds(PFCs) 
or Perfluoroalkyl Acids (PFAAs)

~25 common individual compounds, terminal 
daughters
e.g. PFOS, PFOA, PFHxS, PFBA, PFHxA

Polyfluorinated 
“PFAA Precursors”

1000’s of individual parent 
compounds, and hundreds of 
common intermediates, e.g. 6:2 FTS, 
5:3 acid

Environmental / Higher Organism Biotransformation

More Commonly Regulated

Property of Arcadis, all rights reserved 
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PFAS 
Impacts are 
widespread

08 September 2020 12
https://www.ewg.org/interactive-maps/pfas_contamination/map/

States with 
highest density 
of PFAS sites 
reflects 
programmatic 
testing
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Michigan as Model for Emerging Regulation  
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• State-wide testing of drinking water (2018)

• MCLs for PFOS, PFOA and 5 other PFAS

• Wastewater treatment plants (2018)

• Industrial pre-treatment testing for PFAS users
– Landfills, Chrome plating, Airports, industry with AFFF fire suppression

• Limits on sewer discharge based on Great Lakes surface water standards
– Total maximum daily limit of PFAS discharge at each WWTP for permits

• Surface water sampling at industrial sites (2019)
– Surface water standards among the strictest in country (2018)

– PFOS 11/12 ng/L, PFOA 420/1200 ng/L for drinking water/non-drinking water sources

• Industrial air emissions standards under development (2020)
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Other Trends Affecting Business

09 September 2020 14

Landfill acceptance of PFAS-containing waste limited in anticipation of 
hazardous substance regulation

• Subtitle D landfills with specialized leachate treatment

• Zero discharge landfills in arid regions

• Subtitle C landfills 

USEPA Significant new use rule (SNUR) and Toxic release Inventory rule 
(TRIR) 

• Increasing restrictions on use and administrative reporting requirements

USEPA cancelled incineration testing for PFAS wastes over concerns about 
incomplete treatment
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Changing U.S. Regulatory Climate
Drinking Water (µg/L - ppb)

Drinking Water 
Advisory Guideline

Updated August 07, 2020
Property of Arcadis, all rights reserved 
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• PFOA = (0.070) 
• PFOS = (0.070)

Maine

Washington

• PFOA = 0.010
• PFOS = 0.015
• PFNA = 0.014
• PFHxS = 0.070
• PFBS = 1.3

Nevada

• PFOA = 0.667
• PFOS = 0.667
• PFBS = 66.7

• PFOA = 0.010 
• PFOS = 0.010

New York

California

• PFOA = 0.0051
• PFOS = 0.0065

Alaska

• PFOA = (0.070)
• PFOS = (0.070) • PFOA = (0.020) 

• PFOS = (0.020)
• PFNA = (0.020)
• PFHxS = (0.020)
• PFHpA = (0.020)
• PFDA = (0.020)

Massachusetts

• PFOA = 0.008 
• PFOS = 0.016
• PFNA = 0.006

• PFHxA = 400
• PFHxS = 0.051
• PFBS = 0.420
• GenX = 0.370

Michigan

• PFOA = (0.035)
• PFOS = (0.027)

• PFHxS = (0.047)
• PFBS = (2)
• PFBA = (7)

Minnesota

• PFOA = (0.070) 
• PFOS = (0.070)

Pennsylvania

• PFOA = 0.012 
• PFOS = 0.015
• PFNA = 0.011
• PFHxS = 0.018

New Hampshire

New Mexico

• PFOA = (0.070)
• PFOS = (0.070)
• PFHxS = (0.070)

• PFOA = (0.070) 
• PFOS = (0.070)
• PFNA = (0.070)
• PFHxS = (0.070)
• PFHpA = (0.070)

Connecticut

• PFOA = (0.020) 
• PFOS = (0.020)
• PFNA = (0.020) 
• PFHxS = (0.020)
• PFHpA = (0.020)

Vermont

Parenthetical values 
represent combined 
standards (sum of PFAS)

Highlighted PFAS 
represent new standards 
and guidelines adopted or 
proposed since October 
2019

• PFOA = (0.07)
• PFOS = (0.07)
EPA is in the process of determining 
whether MCLs will be set (as of 2020)

Drinking Water 
Enforceable Standard

• PFOA = 150

West Virginia

• PFOA = (0.070)
• PFOS = (0.070)
• PFNA = 0.021
• PFHxS = 0.140
• PFBS = 140
• HFPO-DA = 0.700

Ohio

U.S. EPA Lifetime Health 
Advisory for Drinking 

Water

• PFOA = 0.014 
• PFOS = 0.013
• PFNA = 0.013

New Jersey

• PFOA = 2
• GenX = 0.140

North Carolina

• PFBS = 400

Indiana
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Reporting Limits and/or regulations are converging 
on background

Typical reporting limits for PFOS and PFOA 
in drinking water are 2 ng/L; lower limits are 
achievable

State-proposed drinking water criteria and 
enforceable MCLs range between 5 and 20 
ng/L

- Recently issued draft CA Environmental 
Screening Levels are below 1 ng/L

Median levels of PFOS/PFOA are within a 
factor of ~2x RLs
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• PFAS defy conventional remediation engineering 
• does not biodegrade
• nearly impractical to chemically oxidize
• has minimal removal through phase changes
• energy-intensive to destroy

• Current state of the practice is a combination of treatment 
technologies

• Goal is to concentrate PFAS for energy-intensive destruction

Property of Arcadis, all rights reserved 

ADSORPTION
SEPARATION/

CONCENTRATION
DESTRUCTION
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PFAS Liquid Treatment Quick Take-Aways
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• Solid treatment technologies available, but minimal drivers to 
necessitate full-scale remediation

• The treatment technologies theoretically/conceptually viable are 
currently being vetted at the laboratory or pilot scale for effectiveness 
on short chain PFAS and precursors

• Large mobilization costs complicate small-scale field-scale pilot 
testing

Property of Arcadis, all rights reserved 
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PFAS Solid Treatment Quick Take-Aways

FIXATION SEPARATION DESTRUCTION
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Precipitation

Activated Carbon

Sonolysis

Resin

Fractionation

Polymeric 
Adsorbents

Electrochemical 
Treatment

AOP

Cement Kilns

RO/NF

Adsorption Destruction

Incineration

Metal-Organic 
Framework

Synthesized 
Gel Adsorbents

Separation

ARP

PFAS Treatment Technologies for Liquid

Activated Carbon

Fractionation

Polymeric 
Adsorbents

Sonolysis

Metal-Organic 
Framework

Development Optimization

Enzymes

Injected 
Activated 
Carbon

Property of Arcadis, all rights reserved 
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Plasma

In-Situ 
Fractionation
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Reduce impacted volume while concentrating PFAS for energy-intensive destruction

Process Flow 
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Mature and Commercially 
Available Technology

Focus of Research and 
Development

PFAS Treatment State of the Practice
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Photo Source: Zaggia et al. 2016Activated 
carbon (AC)

Anion/Ion 
Exchange Resins

Reverse 
Osmosis/Nanofiltration

Property of Arcadis, all rights reserved 

Photo Source: Peter Storch 2018

Photo Source: Evoqua 2017
Photo Source: Evoqua 2017
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Conventional Technologies for PFAS
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Metallic Organic 
Frameworks (MOFs)

Cyclodextrin, Organo-Silica, 
custom granular media

Modified Clays, Pyrolyzed 
Cellulose, Biochar

GAC/Resin

• GAC/Resins: Current “de facto” IRM 
adsorbents

• Modified clays (FluoroSorb®), pyrolyzed 
cellulose, biochar – available, competing 
with GAC/resin for PFAS relevance

• Cyclodextrin (CycloPure®), Organo-Silica 
(PQ-Osorb®), customized granular media 
(Puraffinity®) – promising but experimental

• MOFs, hydrogels, and two-phase 
composites – somewhat esoteric still, but 
huge potential adsorption capacities

Property of Arcadis, all rights reserved 

PFAS-Relevant Adsorbents

Volume of Current Commercial Application
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Fractionation + Ozone = Ozofractionation
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• Destruction of PFAS via high temperatures*
• PFOA defluorination at 300⁰C to 350⁰C*
• PFOS defluorination at 600⁰C*. 
• Applicable to solids and concentrated waste streams. 
• Currently a termination of treatment trains for municipal 

and small-scale systems.

Property of Arcadis, all rights reserved 

Complete mineralization of total 
PFAS >900⁰C*

*Citations available upon request 24

Incinerating PFAS in Liquids

Applicability:

Limitations: Te
m

p
e

ra
tu

re
Volume

H2O

374.14⁰C

3,200 psi

• Incomplete mineralization leads to discharge of PFAS or 
other by-products with long atmospheric half lives*.

• Complete PFAS mineralization results in hydrogen fluoride 
(toxic and corrosive)*.

• Applicability to liquid waste streams may be limited to 
aqueous critical point*.

• Insufficient analytical and sampling methods to confirm 
mineralization



© 2020 Arcadis 

CleanTech Alliance

Sound waves

Electricity

Radiation

OH●

H●

e●

Disproportionation 
into oxidizing and 
reducing radicals

• Thermodynamically possible...

• Kinetically meaningful (scavengers)?

Property of Arcadis, all rights reserved 
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Advanced Reducing Processes - ARP

Adapted from Horst et al 2020
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Incineration

Soil 
Stabilization

Ex Situ 
Thermal

Soil 
Washing

Ball 
Milling

Excavation
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PFAS Treatment Technologies for Solids
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5% Portland Cement 
(control)

5% Portland Cement 
10% FluoroSorb®

5% Portland Cement 
5% FluoroSorb®

15% Portland Cement 
10% RemBind®

10% Portland Cement 
5% RemBind®

Dec 2018

Jul 2019

Oct 2019

Test Pit 1 Test Pit 2

Test Pit 3 Test Pit 4

Test Pit 5

Apr 2020

*Oct 2020

*tentative dates 
based on 
access, no dig, 
etc.

Field-Scale Demonstration of 
PFAS Stabilization

Property of Arcadis, all rights reserved 
27



© 2020 Arcadis 

CleanTech Alliance

1

10

100

1,000

10,000

100,000

P
F

O
S

 in
 L

e
ac

ha
te

 (
ng

/L
)

PFOS

1

10

100

1,000

10,000

100,000

P
F

O
A

 in
 L

ea
ch

at
e 

(n
g/

L)

PFOA

1

10

100

1,000

10,000

100,000

P
F

B
S

 in
 le

ac
ha

te
 (

n
g/

L)

PFBS

1

10

100

1,000

10,000

100,000

To
ta

l P
F

A
S

 in
 L

e
ac

ha
te

 
(n

g/
L)

Total PFAS - Post TOP Assay

Unamended 
Control

Unamended 
Control

Unamended 
Control

Unamended 
Control

6-months 12-months 16-months 22-months 6-months 12-months 16-months 22-months

6-months 12-months 16-months 22-months 6-months 12-months 16-months 22-months

Unamended Control 5% Portland Cement
5% FluoroSorb® and 
5% Portland Cement

10% FluoroSorb® and 
5% Portland Cement

5% RemBind® and 
10% Portland Cement

10% RemBind® and 
10% Portland Cement

OSD Screening Level

Property of Arcadis, all rights reserved 
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Emerging Contaminants Summary

• Emerging contaminants are considering emerging as the 
toxicological and regulatory status is evaluated and evolves

• Emerging contaminants such as 1,4-dioxane and PFAS present a 
new set of challenges to practitioners

• In situ and ex situ management strategies are being developed, 
remedial technologies in research and development

• Practical laboratory quantification is a topic of focus as emerging 
contaminants have low targets

29September 8, 2020
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Q&A

Thank you!

30September 8, 2020

Contact us:
Joe Quinnan Erika Houtz
joseph.quinnan@arcadis.com Erika.houtz@arcadis.com
Tel. 248-789-4951 Tel. 415-432-6947 CRC Press 2019
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Download

PFAS in 
Perspective 
for a closer look at 
how different 
stakeholders are 
approaching PFAS.
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Arcadis.
Improving quality of life.
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